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Characteristic Impedances of Coaxial Structures of

Various Cross Section by Conformal Mapping

E. Costamagna and A. Fanni

Abstract —In a recent paper, Pan [11 presented numerical results for
the characteristic impedance of a large number of coaxial systems with
different geometry, and compared them with earlier published results.
Here, the recently developed numerical techniques for the inversiou of

the Schwarz–Christoffel conformal transformation [2] have been used
to compare the results presented in [11. The results agree ve~ well, thus
lending further weight to the two calculation techniques discussed in [11
and [2].

I. INTRODUCTION

Pan [1] recently obtained simple analytical expressions for

accurately and efficiently determining the characteristic

impedance of coaxial systems composed of circular and noncir-

cular conductors having a variety of shapes and presented nu-

merical results.

Accurate results can be obtained, in principle, by the numeri-

cal inversion techniques, by means of optimization, of the

Schwarz-Christoffel conformal transformation described in [2].

Therefore, it seems to be useful to utilize Pan’s data to check

the reliability of the inversion process for a wide variety of cases,

confirming at the same time the accuracy of the data.

The various families of coaxial lines are examined by referring

directly to the tables and figures presented in [1]. The dielectric

medium is taken to be free space and the values taken for the

permittivity and the velocity of light are those used in [3, p. 3]:

this observation is important when comparing results that often

agree to more than four figures.

II. NUMERICAL RESULTS

The analyzed structures are represented in Figs. 1 to 4, and

the numerical results are shown with previous data [4]–[14] in

Tables I to XII.

The arcs of circles are represented by the sides of regular

polygons with suitable numbers of sides (up to 128), inscribed in

circles with an effective radius chosen such that along each side

the mean distance from the center is equal to r (see figures).

The arcs of ellipses are represented by nonregular polygons

inscribed therein using two different procedures. In the first,

their ends subtend identical angles at the structure center,

which, in principle, seems to be suitable for both large r/b (see

Fig. 3) and large a/b ratios. In the second, the segments define

equal angles between one segment and the next, which seems

suitable for representing the portion of the ellipse with the

greatest curvature and thus for intermediate r/b and small

a / b ratios. Of course, for a/b = 1 the two procedures lead to

the same geometry and the conformal transformation results are

very close to those for the coaxial line, with maximum errors of

the order of some 0.002%.

The polygons used for the effective conformal transformations

are the shaded areas in the figures and use clear symmetry
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conditions. Continuous lines denote electric walls, and dashed

lines magnetic walls. Figs. 1 and 2 and Tables I to IX refer to

polygonal outer conductors. In the cases of Fig. l(a), care was

taken to keep the upper electric wall far enough away so as not

to affect the first five figures of the results.

flmost all the conformal transformation data in Tables VII,

VIII, and IX were obtained in two ways, with nearly coincident

results. The first consisted in transforming the polygon of Fig.

2(b), checking that no changes in results were produced by

placing an electric or magnetic wall on the vertical side parallel

to the trough’s bottom wall on the left. The second involved

imposing a vertical magnetic wall between the points of shortest

distance between the inner and outer conductors and then

calculating the impedance of the parallel of the two resulting

structures. These structures can, in turn, be referred to Fig. l(b)

and to rectangular outer conductor shapes. (Note that it seems

likely that Pan’s data [1] for h/r = 0.5 have been wrongly

arranged owing to a clerical error and that they can be rear-

ranged as in Table VII.)

Worthy of mention is the check carried out on the data of

Tables IV, V, and VI. For large ratios r/R, the increase in

capacitance with r is clearly close to twice that calculable for

the same variation of r on the geometry of Fig. l(a) using the

single-wire-above-ground formula (2.4.2a) in [3]. Based on this

incremental capacitance, an attempt was made to calculate the

impedance for r\R = 0.95 starting from the value obtained by

conformal transformation for r\R = 0.9 and then the impedance

for r/R = 0.99 starting from the value both for r/R= 0.9 and

for r/R = 0.95. In each case the differences from the tabulated

value were less than O.l$ZOfor a/R = 2.5 and a/R = 2 and less

than 0.5% for a/R = 1.5. Similar comparisons done starting

from the reference data shown in the table were not so satisfac-

tory when the values deviated appreciably from those calculated

by conformal transformation. The same type of check has been

successfully performed also on the data of Tables VII, VIII,

and IX.

As far as we are aware, the data given in Table X for the

elliptical structures in Fig. 3 are among the first that can

confirm the data published by Pan [1]. They have been obtained

with the first of the above-mentioned procedure, which seems to

be more insensitive to the number of segments employed.

Fig. 4 and Tables XI and XII refer to polygonal inner conduc-

tors.

Excellent agreement has been found between conformal

transformation results and certain data reported by Geyi et al.

[15, tables 2, 3, and 5] for square outer conductor and elliptical

structures (differences not exceeding ().3()Yo).

These results show accuracies often similar to those obtained

with polygons of simpler shapes and a small number of sides, for

instance, the rectangular coaxial lines described in [16], for

which impedances with five figures coincident with Riblet’s

table [16, table 1] have been computed.

111. CONCLUSIONS

The results derived by numerical inversion of the SC formula

show very good agreement with Pan’s values: in fact, the differ-

ences are limited to within about 0.1 –0.5% in many cases and

seldom exceed some 1%. This shows, besides the practical

usefulness of Pan’s analytical expressions, the efficiency of the

numerical techniques presented in [2], which make numerical
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TABLE I
CHARACTERISTICIMPEDANCEFORAN N-REGULAR-POLYGON OUTER

CONDUCTORIN WHICH N = 1 OR 2

N 1 2

Present Pan Gunston Present Pan Wheeler
r/R Work [1] [3, p. 11] Work [11 [4]

0.05 221.11 221.12 221.12 194.08 194.08 194.08
0.1 179.45 179.45 179.45 152.52 152.52 152.53
0.3 112.34 112.34 112.34 86.62 86.59 86.62
0.5 78.95 78.95 78.95 55.71 55.66 55.72
0.7 53.69 53.69 53.69 34.51 34.51 34.54
0.9 28.00 28.01 28.01 16.03 16.03 16.07

TABLE II
, CHARACTERISTICIMPEDANCEFORAN N-REGULAR-POLYGON

OUTER CONDUCTORIN WHICH N = 3
—

Present Pan Seshadri Epele
r/R Work [1] [51 [6]

0.05 187.04 187.04 187.32
0.1 145.48 145.48 145.70 145.50
0.3 79.62 79.61 79.74 79.63
0.5 48.96 48.91 49.03 48.98
0.7 28.53 28.43 26.57 28.53
0.9 12.05 11.99 12.06 12.10
0.95 7.70 7.70

0.95 19.37 19.37 19.37 10.63 10.64 10.67

T@LE III
CHARACTERISTICIMPEDANCEFORAN N-REGULAR-P• LYGOFJOUTER CONDUCTOR

IN WHICH N = 4 OR 6

N 4 6

Present Pan Seshadri Riblet Present Pan Seshagiri
r-/R Work [1] [5] [71 Work [1] [8], [1], [3]

0.05 184.14 184.14 184.42 181.84 181.82 181.64
0.1 142.59 142.59 142.80 140.25 140.26 140.01
0.3 76.72 76.72 76.84 74.39 74.40
0.5 46.09

74.04
46.07 46.16 46.09

0.7
43.77 43.77 43.43

25.85 25.77 25.89 25.85 23.59 23.56 23.34
0.9 10.13 10.06 10.15 10.13 8.35 8.30
0.95

8.25
6.25 6.24 6.25 4.86 4.85 4.83

(a) (b)

‘h @
(d (d) (e)

Fig. 1. Outer conductor of regular-polygon cross section for (a) N= 1,
(b) N=2, (c) N=3, (d) N=4, and(e) N=6.

TABLE IV
CHARACTERISTICIMPEDANCEFOR RECTANGULAROUTER CONDUCTC)R

IN WHICH a/R= 1.5
—

Present Pan Lin [9] Pan
r/R Work [11 [3, p. 66] [10], [1]

0.05 191.96 191.95 191.95 191.95
0.1 150.39 150.39 150.39 150.46
0.3 84.50 84.48 84.50 84.65
0.5 53.70 53.64 53.70 53.81
0.7 32.86 32.72 32.82 32.94
0.9 15.25 14.88 15.14 15.35
0.95 10.21 9.81 10.10 10.27
0.99 4.35 4.12 4.31 4.36

—

TABLE V
CHARACTERISTICIMPEDANCEFORRECTANGULAROUTER CONDUCTOR

IN WHICH a/R = 2

Present Pan Lin [9] Pan
r/R Work [1] [3, p. 66] [10], [1]

t
0.05 193.63 193.64 193.64 193.64
0.1 152.08 152.08 152.08 152.13

2R 0.3 86.18 86.15 86.19 86.15
0.5 55.29 55,24 55.39 55.07

r Za
0.7 34.17 34.14 34.48 33.86
0.9 15.88 15.79 16.44 15.73

(a) (b) 0.95 10.55 10.47 11.11 10.46

Fig. 2. Outer conductor of nonregular-polygon cross section.
0.99 4.42 4.42 4.80 4.39

—

TABLE VI
CHARACTERISTICIMPEDANCE FOR RECTANGULAR OUTER CONDUCTOR

IN WHICH a/R= 2.5

Present Pan Lin [9] Pan

r/R Work [1] [3, p. 661 [10], [1]

0.05 193.99 193.99 193.99 193.99
0.1 152.43 152.43 152.43 152.44
0.3 86.53 86.51 86.55 86.32
0.5 55.63 55.58 55.75 55.09
0.7 34.44 34.43 34.82 33.78
0.9 16.00 15.98 16.71 15.66
0.95 10.61 10.61 11.32 10.40
0.99 4.43 4.48 4.90 4.37



1042 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 6, JUNE 1991

TABLE VII TABLE VIII
CHARACTERISTICIMPEDANCEFORTROUGH OUTER CONDUCTOR CHARACTERISTICIMPEDANCEFORTROUGH OUTER CONDUCTOR

IN WHICH h/R=O.5 IN WHICH h/R=l

Present Same, with Pan Chisholm [11] Present Same, with Pan Chisholm[ll] Wheeler
r/R Work Parallel [1] [3, p. 76] r/R Work Parallel [1] [3, p. 76] [4]

0.025 210.32 212.57 210.34 0.05 188.89 188.98 188.90 188.89 188.90
0.05 168.72 170.53 168.75 168.72 0.1 147.33 147.39 147.34 147.33 147.34
0.15 102.26 103.07 102.37 102.26 0.3 81.36 81.37 81.47 81.36 81.39
0.25 70.26 70.58 70.23 70.27 0.5 50.45 50.45 50.71 50.46 50.52
0.35 47.31 47.40 46.71 47.41 0.7 29.56 29.56 30.09 29.67 29.69
0.45 25.28 25.29 23.60 26.49 0.9 12.41 12.41 13.13 13.24 12.56
0.47 19.57 19.57 17.78 21.86 0.94 8.84 8.84 9.52 10.19 8.95
0.49 11.47 9.97 16.77 0.98 4.56 5.11 4.61

TABLE IX
CHARACTERISTICIMPEDANCEFORTROUGH OUTER CONDUCTOR

lN WHICH h/R=l.5

Present Same, with Pan Chisholm[11]
r/R Work Parallel [1] [3, p. 76]

0.05 193.00 193.01 193.01 193.01
0.1 151.45 151.45 151.45 151.45
0.3 85.55 85.55 85.54 85.55
0.5 54.69 54.69 54.65 54.69
0.7 33.66 33.66 33.62 33.69
0.9 15.63 15.63 15.46 16.07
0.94 11.55 11.55 11.36 12.46
0.98 6.32 6.19

TABLE X
CHARACTERISTICIMPEDANCEFORELLIPTICAL OUTER CONDUCTOR

a/b 1.5 2 3 5

Present Pan Present Pan Present Pan Present Pan
r/R Work [1] Work [1] r/R Work [1] Work [1]

0.05 188.25 188.27 191.12 189.92 0.05 192.88 192.14 193.67 193.30
0.1 146,69 146.71 149.56 148.36 0.1 151.33 150.58 152.11 151.74
0.3 80.81 80.83 83.67 82.47 0.3 85.43 84.67 86.21 85.82
0.5 50.07 50.10 52.84 51.70 0.5 54.55 53.82 55.31 54.93
0.7 29.44 29.53 31.94 30.98 0.7 33.47 32.88 34.15 33.86
0.9 12.65 12.75 14.31 13.73 0.9 15.32 14.99 15.78 15.61

TABLE XI
CHARACTERISTICIMPEDANCEFORAN N-REGULAR-POLYGON INNER CONDUCTOR

lN WHICH N=3 OR 4

N 3 4

Present Pan Seshadri Pan Present Pan Seshadri Lin Pan
ap/R Work [1] [12] [10] Work [1] [12] [13] [10]

0.05
0.1
0.3
0.4
0.5
0.6
0.65
0.7

156.87 156.87 155.20 156.87 169.66
115.31 115.31 113.58 115.19 128.10

49.31 49.24 47.40 48.31 62.24
31.29 31.01 28.86 29.65 44.98

31.51
20.19
14.77

7.82

169.66
128.11
62.23
44.94
31.40
19.87
14.24
6.70

169.57 169.67 169.66
127.95 128.11 128.12

61.99 62.24 62.23
44.70 44.97 44.92

31.20 31.49 31.38
19.76 20.03 19.95
14.08

6.28 7.32

TABLE XII
CHARACTERISTICIMPEDANCEFORANN-REGULAR-P• LYGONINNER CONDUCTOR

IN WHICH N=20R6

N 2 6

Present Pan Gunston Oberhettinger Present Pan Seshadri Pan
ap/R Work [1] [3, p. 80] [14], [1] Work [11 [12] [101

0.05 221.15 221.16
0.1 179.60 179.60
0.3 113.67 113.69
0.6 71.15 71.22
0.7 60.93 60.99
0.9 40.67 40.80
0.94 35.48 36.21
0.99 24.73 25.03

221.15 175.95 175.95 175.95
179.60 134.40 134.39 134.41
113.67 68.53 68.54 68.59 68.59

71.16 26.97 26.93 26.96 27.08
60.95 17.69 17.58 17.79
40.93 40.13
36.00 35.25

24.71
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Fig. 3. Outer conductor of elliptical cross section.
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Fig. 4. Inner conductor of regular-polygon cross section for (a) N =2,
(b) N=3, (c) N=4, and(d) N=6.

inversion by optimization a general-purpose tool very applicable

to a broad range of cases.

Indeed, nearly all the structures examined led to large ratios

between adjacent sides in the transformed plane of the opti-

mization. These ratios cannot be handled with traditional tech-

niques, but by developing the integration techniques introduced

in [2], ratios up to 10 15 have been easily faced. Nevertheless,

these conformal mapping techniques often require knowledge of

magnetic boundary walls which are not immediately suggested

by the geometry of the structure.
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A Procedure for Solving the Electric Field Integral

Equation for a Dielectric Scatterer with a Large

Permittivity Using Face-Centered Node Points

Ching-Chuan Su

A&r-act —A numerical procedure for solving the electric field integral

equation (EFIE) using the pulse-basis block model is proposed. The
main features of the method are the use of face-centered node points

and a unique way of choosing the unknown fields. Such a procedure
keeps the resulting matrix relatively well conditioned, even when the
magnitude of the permittivity is large. In addition, the proposed pnoce-
dure can preserve the convolution property contained in the EFIE and,
hence, the FFT can be incorporated into the algorithm.

I. INTRODUCTION

The electric field integral equation (EFIE) is widely employed

to analyze inhomogeneous dielectric scatterers of arbitrary

shapes. To solve the integral equation numerically the method

employing the block model (i.e., using rectangular cells to mcldel

an arbitrarily shaped scatterer) in conjunction with the pulse-

function expansion and the point-matching technique is rather

popular [1]–[7]. Recently, the efficiency of this method with

respect to both computational speed and memory requirements

has been greatly improved by the use of the conjugate gradient

method (CGM) and the fast Fourier transform (FFT) [4]–[6].
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